Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Virol J ; 19(1): 212, 2022 12 09.
Article in English | MEDLINE | ID: covidwho-2162392

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 virus and its variants, has posed unprecedented challenges worldwide. Existing vaccines have limited effectiveness against SARS-CoV-2 variants. Therefore, novel vaccines to match mutated viral lineages by providing long-term protective immunity are urgently needed. We designed a recombinant adeno-associated virus 5 (rAAV5)-based vaccine (rAAV-COVID-19) by using the SARS-CoV-2 spike protein receptor binding domain (RBD-plus) sequence with both single-stranded (ssAAV5) and self-complementary (scAAV5) delivery vectors and found that it provides excellent protection from SARS-CoV-2 infection. A single-dose vaccination in mice induced a robust immune response; induced neutralizing antibody (NA) titers were maintained at a peak level of over 1:1024 more than a year post-injection and were accompanied by functional T-cell responses. Importantly, both ssAAV- and scAAV-based RBD-plus vaccines produced high levels of serum NAs against the circulating SARS-CoV-2 variants, including Alpha, Beta, Gamma and Delta. A SARS-CoV-2 virus challenge showed that the ssAAV5-RBD-plus vaccine protected both young and old mice from SARS-CoV-2 infection in the upper and lower respiratory tracts. Whole genome sequencing demonstrated that AAV vector DNA sequences were not found in the genomes of vaccinated mice one year after vaccination, demonstrating vaccine safety. These results suggest that the rAAV5-based vaccine is safe and effective against SARS-CoV-2 and several variants as it provides long-term protective immunity. This novel vaccine has a significant potential for development into a human prophylactic vaccination to help end the global pandemic.


Subject(s)
COVID-19 , Parvovirinae , Animals , Humans , Mice , SARS-CoV-2/genetics , COVID-19/prevention & control , Pandemics , Vaccines, Synthetic/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Antibodies, Viral
2.
J Gen Virol ; 103(11)2022 11.
Article in English | MEDLINE | ID: covidwho-2116873

ABSTRACT

Over the past few months there have been reports of severe acute hepatitis in several hundred, otherwise healthy, immunocompetent young children. Several deaths have been recorded and a relatively large proportion of the patients have needed liver transplants. Most of the cases, so far, have been seen in the UK and in North America, but it has also been reported in many other European countries, the Middle East and Asia. Most common viruses have been ruled out as a causative agent; hepatitis A virus (HAV), hepatitis B virus (HBV) and hepatitis C virus (HCV) were not detected, nor were Epstein-Barr virus (EBV), cytomegalovirus (CMV) and human immunodeficiency virus (HIV) in many cases. A small proportion of the children had been infected with SARS-CoV-2 but these seem to be in a minority; similarly, almost none of the children had been vaccinated against COVID-19. Significantly, many of the patients were infected with adenovirus 41 (HAdV-F41). Previously, HAdV-41 had not been linked to hepatitis and is usually considered to cause gastroenteritis in both immunocompetent and immunocompromised patients. In two most recent studies, adeno-associated virus 2 (AAV2) was detected in almost all patients, together with species C and F HAdVs and human herpesvirus 6B (HHV6B). Here, I discuss the possibility that a change in tropism of HAdV-41 and changes in AAV2 may be responsible for their links to acute hepatitis.


Subject(s)
Adenoviridae Infections , COVID-19 , Epstein-Barr Virus Infections , Hepatitis , Parvovirinae , Child , Humans , Child, Preschool , Adenoviridae , Herpesvirus 4, Human , SARS-CoV-2 , Hepatitis/complications
SELECTION OF CITATIONS
SEARCH DETAIL